Use Coldplate to model a cold plate and heat exchanger circuit

The cold plate and heat exchanger to be modeled are shown below. It is assumed the heat exchanger is a Lytron model 6210 and the cold plate parameters are shown in Figure 1. Figure 2 is the assumed pump curved used to circulate 50% ethylene glycol and water through both the cold plate and heat exchanger.

Figure 2: Pump curve used to circulate the ethylene glycol/water fluid through both the cold plate and heat exchanger

Determine the pressure loss coefficient of the heat exchanger

The effective pressure loss coefficient K for the liquid side of the heat exchanger is calculated as follows assuming an ID of .287 inches and 20 degree C. This loss coefficient K along with the pump curve, the 36 inch length of tubing and the internal pressure drop in the cold plate are used to determine the ethylene glycol/water flow rate.

Assume the pressure drop, ΔP , through the exchanger is given by:

$$\Delta P = \frac{K\rho V^2}{2g} = \frac{K\rho \Psi^2}{2gA^2}$$

Where:

 $\rho = 66.4$ lb/ft3, the density of ethylene glycol and water at 20C.

V is the velocity.

G is the gravity constant.

A is the cross sectional area of tube.

D is the ID of the tube.

 Ψ is the volume flow rate in ft3/min.

Q is the volume flow rate in gal/min.

Solving for K:

$$K = \frac{2gA^{2}\Delta P}{\rho\Psi^{2}} = \frac{2(32.17 \, ft \, / \sec^{2})(\pi D^{2} \, / \, 4)^{2} \, (in^{4})(\Delta P(lb \, / \, in^{2}))(1 \, ft^{2} \, / \, 144in^{2})}{(66.4lb \, / \, ft^{3})(\Psi ft^{3} \, / \, \min)^{2} \, (1 \, \min / \, 60 \, \sec)^{2}}$$

$$K = 14.93 D^4 \Delta P / \Psi^2$$

Convert flow rates:

$$Q(gal / \min) = \Psi(ft^3 / \min)(7.48gal / ft^3)$$
$$\Psi = Q / 7.48$$

Substitute into K:

$$K = 835.21 D^4 \Delta P / Q^2$$

For D = .287 in. and from the Lytron pressure drop curve at Q = 2gal/min, $\Delta P = 8 \text{ lb/in}^2$:

K = *11.33*

And for D = .287 inches, at Q = 3gal/min, $\Delta P = 18 \text{ lb/in}^2$:

$$K = 11.33$$

Since the value of K is the same for both data points, then the assumed equation for calculating K appears to be correct.

Determine the flow rate of the fluid through the cold plate/heat exchanger

Figures 4 through 7 lists the inputs to Coldplate necessary to determine the fluid flow rate. Note that the Inlet Fluid Temperature is assumed to be 30C; the pressure drop is a weak function of temperature so in this case using 30C will result in a small error. The model can be easily rerun with an updated temperature.

Tube/Ch	iannel Co	ld Plate	Dames Dissignation Î	Den une Dure l	Estemallia	а т ана (1 с	Severate Dist. Ì		
r-Geometri	Materiai v	Fiuld Properties	Power Dissipation	Pressure Drop	External Hea	it i ransrer 0			
		W	Length (in.)		10				
	5	7/	Width (in.)		6				
t 🛃	<u>A</u>		Base Thickness	(in.)	0.6	Variable			
*	× Ins	ulation	Insulation Thickr	iess (in.)		Variable			
C	Choose Tur	be of Cooling Tub	e/Channel Cross Sect	ion 🗿 Circu	lar C Be	ctangular			
			Disertation (in)		0.287	Variable			
6	$\mathbf{>}$	\square	Diameter (in.)			valiable			
D	Н	W	Witter (m.)	-					
			meight (in.)	-					
-Tube/Ch	annel to B	ase Plate Resista	nce				1		
					_				
	<u> </u>	<u> </u>	ermal Resistance from	n Tube to Base	(C-in/W)	U			
<u> </u>	À , ,	Pe	ercent Convection/Tu	be in Contact w	ith Base	100			
2									
Mo	odel Descr	iption	🗸 ОК	X Cance	4 I	SaveAs	🔒 Save	7 Help	

Figure 4: Geometry Input

Tube/Channel Cold Plate				×
Geometry Material Fluid Properties Power Diss	ipation Pressure	Drop External H	leat Transfer Generate Plots	
 Fluid Temperature, Pressure or Altitude 			Type of Cooling Fluid	
Inlet Fluid Temperature (C)	30 below:	1		
Inlet Fluid Pressure (lb/in^2)		Mariable	☐ COOLANOL25 ☐ EG_H2O_30/70 ☐ EG_H2O_40/60	
Exit Fluid Pressure (Ib/in^2)	30	Valiable	G_H2O_50/50	
Inlet Fluid Altitude (ft)			FC75	
Exit Fluid Altitude (ft)			HFE7100	-
Fluid Flow Rate		(Min, Max and Number of Values	
Input one or more:				
Mass Flow Rate (Ib/min)		Variable		0.5
Volume Flow Rate (gal/min)	0.5	Variable	Minimum value	0.5
Predict Flow Rate That Results In:			Maximum value	2.5
Cold Plate Temperature (C) of				
Fluid Exit Temperature (C) of			Number of values	5
Pressure Drop (in. H20) of				
			Cancel	? <u>H</u> elp
1		1		
Model Description		Cancel		

Figure 5: Fluid Properties Input

Chaose One Tune Of Flow	operties Power Dissipation	(Section) Then Define Press	-Duct D	efinition				
System Inlet Section	Inlet Section	Tube Cold Plate Section		H			D	
m/ <u>2</u> -	m m	m		Type of Duct	Width or Diameter (in)	Height (in)	Length (in)	Loss Coefficient
[r ┣━ m			1	Circular 💌	.287			11.33
2 <u>m-</u>			2	Circular	.287		36	
			3	Rec				
		m	4	Rec		()		3
			5	Rec				
			0	Rec				
No Such Section	No Such Section		8	Rec	-			-
			9	Rec		1		
	<u> </u>	J	10	Rec				
	Flow In Paralle	With The Cold Plate Or The I	Additio Sum	nal Losses- of loss coeffi	cients divided by	areas squar	red (1/in.^4)	

Figure 6: Pressure Drop Parameters

The intersection of the pressure drop and pump curves shows the operating point has a flow rate of approximately 2 gal/min. This value will be used for the rest of analysis.

Figure 8: Pump Operating Point

Thermal/fluid circuit and conductor connection values

The thermal/fluid circuit for connecting the cold plate to the heat exchanger is shown in Figure 9 and the value of the conductors are calculated below.

Figure 9: Thermal/Fluid Circuit

The conductor G – HX is taken from the Lytron curve for the model 6210 heat exchanger, Figure 10 at 2 gal/min and 180 CFM it is:

G - HX = 62 W/C

G – HX can be treated as a conductor from the air inlet temperature (node 5001) to the inlet EGW inlet temperature (node 3998).

Figure 10: Lytron Heat Exchanger Thermal Conductance Curves

The EGW (ethylene glycol and water) fluid flow conductor mCp –EGW is calculated as below:

$$\begin{split} \rho &= 65.9 \text{ lb/ft}^3 \\ \text{Cp} &= 25.52 \text{ (W-min)/(lb-C)} \\ \text{m} &= \rho \ \Psi &= (65.9 \text{ lb/ ft}^3)(2\text{gal/min})(1\text{ft}^3/7.48\text{gal}) = 17.62 \text{ lb/min} \\ \text{mCp} &- \text{EGW} &= (17.62 \text{ lb/min})(25.52 \text{ (W-min)/(lb-C)}) = 449.7 \text{W/C} \end{split}$$

The air inlet fluid flow conductor for the heat exchanger is calculated as below:

$$\begin{split} \rho &= P/RT \\ \rho &= [(14.7 \text{ lb/ft}^2)(144\text{in}^2/1\text{ft}^2)]/[(53.34\text{ft/R})(30+273)\text{K}(1.8\text{R}/1.0\text{K})] \\ \rho &= .073 \text{ lb/ft}^3 \\ \text{Cp} &= 7.6 \text{ (W-min)/(lb-C)}) \\ m &= \rho \Psi = (.073 \text{ lb/ ft}^3)(180\text{ft}^3/\text{min}) = 13.14 \text{ lb/min} \\ \text{mCp} - \text{Air} &= [13.14 \text{ lb/min}][7.6 \text{ (W-min)/(lb-C)}] = 99.9\text{W/C} \end{split}$$

Input the thermal/fluid model into Coldplate

The thermal/fluid circuit shown in Figure 9 is inputted to Coldplate as shown in Figures 11 through 14. Note that the connection from the inlet air node (5001) to the first fluid node (242) in the cold plate needs to be disconnected as shown. This is done by over-writing the connection and adding a new connection with a value of 0.

For this analysis, assume the cold plate is 12 nodes wide and 20 nodes long. In addition, assume the cold plate has a 4 pass tube configuration. Assume also the power is uniformly distributed.

Figure 11: Define Cold Plate Node Structure and Extra Nodes Used in Figure 9

per of no per of no innect C	odes along width odes along lengt odes along lengt	th 20 5 h annel to Base	Example: Nodes along Leng Nodes along Widt	Flow Direction ath	4 8 3 7 2 6 1 5	Length 12 16 20 11 15 19 10 14 18 9 13 17	Node Lay	out Schem
	List of Extra No	ides						
	Node Number	Intial Temperature (C)	Thermal Mass (W-sec./C)	Comment Number		Thermal M	Aass:	
	1 3998	30	0			D = De	nsity	
	2 3999	30	0			V - Valuma a	er Mada	
	3 3997	30	0			v = volume p	BI NUUE	
	4					Cp = Specif	ic Heat	
	5					Thermal Mass = I	Ох∀хСр	
	б				-			
	Groups of Extra	a Nodes						-
	Number of Nodes	Starting Node Number	Increment Value	Intial Temper (C)	rature	Thermal Mass (W-sec./C)	Comment Number	
			-					
	2							
	3							
	4			-				
	5							
	5							+

Figure 12: Define Uniformly Distributed 1200Watts across Cold Plate and Power to the Heat Exchanger

O Us	e "Unifo ⊫ Unifo	orm" power	•	Consta	ant power (Lis	its or Layout) ers	C Power versu	us time (Lists) 🕜 Pow	er versus temp	erature (List:
					Node Number	Power (Watts)	Time Array Number	Temperature Array Number	Comment Number	-
	Cons	tant Power Lay	out	1	1	5.0000				
	1		8	2	2	5.0000				
		Power Layout	2	3	3	5.0000				
	1			4	4	5.0000				
				5	5	5.0000				
	Heater/Cooler		106	6	6	5.0000				
		Heater		7	7	5.0000				
	10	Heater		8	8	5.0000				-
		Groups of	of Pow	ers -						
		Number of Nodes	Star No Num	ting de nber	Increment Value	Power (Watts)	Time Array Number	Temperature Array Number	Comment Number	1
	1	1	39:	99	1	1200				
	2	1	39	97	1	-1200				
	3	1	39	98	1	1200				
	4									
	5							-		
	6									
	7]						
	8									-
						t de		10). (d.		

	1 110000	1 1 0110			1 commonito 1						
•	Constant	conductan	ice	C Conduc	ance versus ti	me	C Conduc	ctance versi	us tempera	ture	
	"From" Node	"To" Node	s Constant Conductance	Time Arra No.	y Temperat Array Ni	ure Cond. 5. Type	Comment Number		Conductor C - cor	Types: nduction	
1	5001	242	0			F			R - rac	diation	
2	5001	3998	62			F			Conductor	Units:	
3	4999	3998	449.7			F			C, F - \	watt/C	
4	3997	242	449.7			F			R · Wa	att/C^4	
5	5001	3999	100			F			Dunlicate	Conductors -	
6	3998	3997	449.7			F			 Over-wr 	te .	
7						C					
8	8			2	-	0			🗇 Add in p	parallel	
— G	iroups of Ex	ktra Conduc	otors		0						
G	iroups of Ex No. of Con- ductors	ktra Conduc Starting "From" Node	ctors Increment Value	Starting "To" Node	Increment Value	Constant Conductanc	Time Array No.	Temp. Array No.	Cond. Type	Comment Number	1
G	iroups of Ex No. of Con- ductors	ktra Conduk Starting "From" Node	ctors Increment Value	Starting "To" Node	Increment Value	Constant Conductanc	e Array No.	Temp. Array No.	Cond. Type C	Comment Number	
G	iroups of Er No. of Con- ductors	xtra Condu Starting "From" Node	ctors Increment Value	Starting "To" Node	Increment Value	Constant Conductanc	Time Array No.	Temp. Array No.	Cond. Type C C	Comment Number	
G 1 2 3	iroups of E No. of Con- ductors	xtra Condu Starting "From" Node	ctors	Starting "To" Node	Increment Value	Constant Conductanc	e Array No.	Temp. Array No.	Cond. Type C C C C	Comment Number	
G 1 2 3 4	iroups of E No. of Con- ductors	stra Condu Starting "From" Node	ctors	Starting "To" Node	Increment Value	Constant Conductanc	Ce Array No.	Temp. Array No.	Cond. Type C C C C C C	Comment Number	
1 0 3 4 5	iroups of E No. of Con- ductors	xtra Condu Starting "From" Node	ctors	Starting "To" Node	Increment Value	Constant Conductanc	E Array No.	Temp. Array No.	Cond. Type C C C C C C C C C	Comment Number	
1 6 3 4 5 6	iroups of E Con- ductors	xtra Condu Starting "From" Node	ctors	Starting "To" Node	Increment Value	Constant Conductanc	ce Array No.	Temp. Array No.	Cond. Type C C C C C C C C C C C C	Comment Number	
	iroups of E No. of Con- ductors	stra Condu Starting "From" Node	ctors	Starting "To" Node	Increment Value	Constant Conductanc	e Array No.	Temp. Array No.	Cond. Type C C C C C C C C C C C C C	Comment Number	
G 1 2 3 4 5 6 7 8	iroups of E Con- ductors	xtra Condu Starting "From" Node	ctors	Starting "To" Node	Increment Value	Constant Conductanc	Time Array No.	Temp. Array No.	Cond. Type C C C C C C C C C C C C C C C C C C C	Comment Number	

Figure 13: Define the Conductor Connections shown in Figure 9

Figure 14: Define the Cold Plate as a 4 Pass Tube Configuration

Results from running the Coldplate model

Figure 15 shows the results from running the model while the calculations below compare the model results with hand (explicit) analysis.

$$T_{3998} = 30C + (1200W)/(62W/C) = 49.35C \text{ versus } 49.37C$$

$$T_{3997} = 49.35C - (1200W)/(449.7W/C) = 46.69C \text{ versus } 46.70C$$

$$T_{3999} = 30C + (1200W)/(99.9W/C) = 42.01C \text{ versus } 42C$$

Figure 15: Results from the Coldplate model